ACE Scoring for 2005

- Scorer overview
- Pilot annotation scores

The Scoring Method

- The scorer scores the performance of a system by computing the "value" of the system's output using a three-step process:
 - The value of each system output element is computed for all possible sys-ref mappings, including misses (sys doesn't match any ref) and false alarms (ref doesn't match any sys).
 - 2. An optimum association (one-to-one mapping) of sys elements to ref elements is found so that the resulting bottom-line score is maximized.
 - 3. The bottom-line score is computed, along with a myriad of diagnostic information, including various attribute-conditioned performance statistics and various attribute confusion matrices.

"Cross-document" = "Real World"

- The scorer scores the value of inferences made about things in the "real world".
 - To be valuable these inferences must represent real-world elements that exist separate and apart from the document(s) that mention them.
 - Real world identity is represented in the apf file format by means of a globally unique ID that is assigned to each (unique) real-world element.
 - The scorer always performs real-world (i.e., "cross-doc") scoring.
 - If only document-level scoring is desired, then the coreference links must be severed in the reference data (by creating unique element ID's in each document).

The EDR Scoring Formula

$$EDR_Value_{sys} = \sum_{i} value_of_sys_entity_{i}$$

$$value_of_sys_entity = Entity_Value(sys_entity) \cdot \sum_{m} Mention_Value(sys_mention_{m})$$

$$Entity_Value = \begin{cases} \min \begin{pmatrix} ETypeValue(sys) \cdot EClassValue(sys), \\ ETypeValue(ref_{sys}) \cdot EClassValue(ref_{sys}) \end{pmatrix} \cdot \begin{pmatrix} W_{Eerr-type} \cdot W_{Eerr-class} \end{pmatrix} \text{ when mapped} \\ ETypeValue(sys) \cdot EClassValue(sys) \cdot \langle W_{E-FA} \rangle \text{ when entity not mapped} \end{cases}$$

$$Mention_Value = \begin{cases} \min \begin{pmatrix} MTypeValue(sys), \\ MTypeValue(ref_{sys}) \end{pmatrix} \cdot (W_{Merr-type} \cdot W_{Merr-tyle} \cdot W_{Merr-style}) \text{ when mapped} \\ -MTypeValue(sys) \cdot (W_{M-FA} \cdot W_{M-CR}) \text{ when mention not mapped} \end{cases}$$

The QDR Scoring Formula

$$QDR_Value_{sys} = \sum_{i} value_of_sys_quantity_i$$

$$value_of_sys_quantity = Quantity_Value(sys_quantity) \cdot \sum_{m} Mention_Value(sys_mention_{m})$$

$$Quantity_Value = \begin{cases} \min \begin{pmatrix} QTypeValue(sys), \\ QTypeValue(ref_{sys}) \end{pmatrix} \cdot \begin{pmatrix} W_{Qerr-type} \cdot W_{Qerr-subtype} \end{pmatrix} \text{ when mapped} \\ WTypeValue(sys) \cdot \begin{pmatrix} W_{Q-FA} \end{pmatrix} \text{ when quantity not mapped} \end{cases}$$

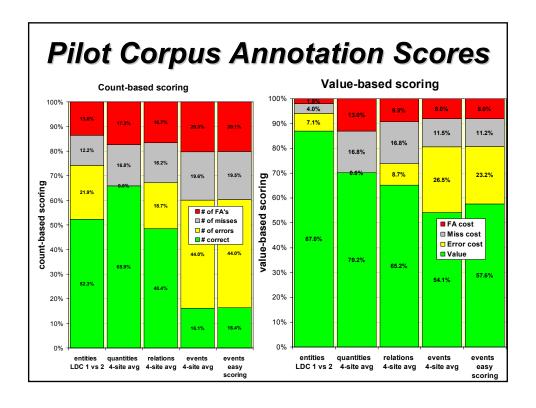
The RDR Scoring Formula

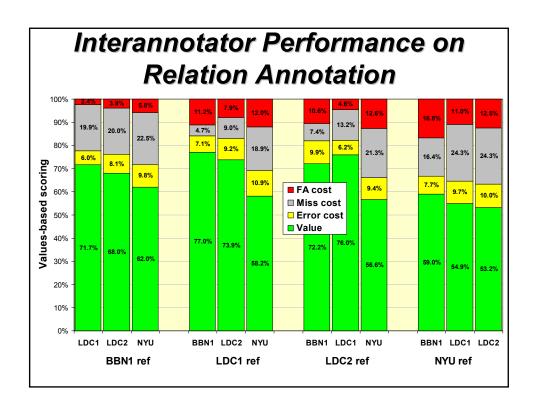
$$RDR_Value_{sys} = \sum_{i} value_of_sys_relation_i$$

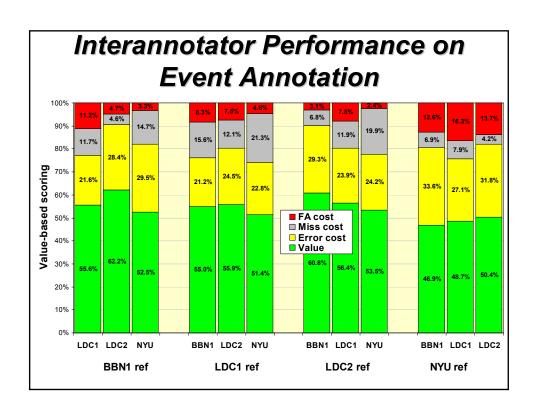
$$value_of_sys_relation = Relation_Value (sys_relation) \cdot \sum_{a} Argument_Value (sys_argument_a)$$

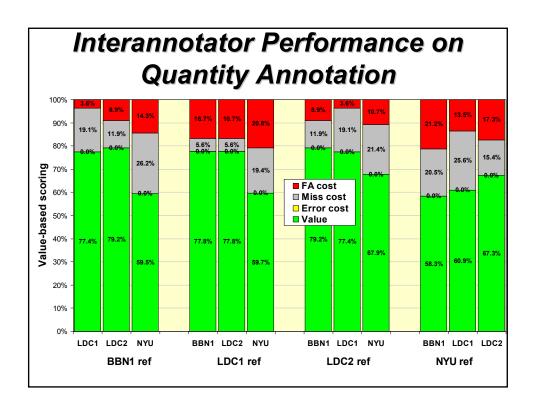
$$Relation_Value = \begin{cases} \min \begin{pmatrix} RTypeValue(sys), \\ RTypeValue(ref_{sys}) \end{pmatrix} \cdot (W_{Rerr-sype} \cdot W_{Rerr-subtype}) \text{ when mapped} \\ RTypeValue(sys) \cdot (W_{R-FA}) \text{ when relation not mapped} \end{cases}$$

$$Argument \ Value = Element \ Value(sys)$$


The VDR Scoring Formula


$$VDR_Value_{sys} = \sum_{i} value_of_sys_event_{i}$$


$$value_of_sys_event = Event_Value(sys_event) \cdot \sum_a Argument_Value(sys_argument_a)$$


$$Event_Value = \begin{cases} \min \begin{pmatrix} VTypeValue(sys) \cdot VModeValue(sys), \\ VTypeValue(ref_{sys}) \cdot VModeValue(ref_{sys}) \end{pmatrix} \cdot (W_{Verr-type} \cdot W_{Verr-mode}) \text{ when mapped} \\ VTypeValue(sys) \cdot (W_{V-FA}) \text{ when event not mapped} \end{cases}$$

$$Argument_Value = \begin{cases} Element_Value(sys) \cdot (W_{Aerr-role}) \text{ when mapped} \\ Element_Value(sys) \cdot (W_{A-FA}) \text{ when argument not mapped} \end{cases}$$

